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Abstract
The linear and non-linear rheology of a high volume fraction particle filled unentangled
polymer melt is measured. The particles in the polymer melt behave like hard spheres as the
particle volume fraction is raised. At high volume fractions, the suspension develops a plateau
elastic modulus. Over the frequency range of the elastic modulus plateau, the viscous modulus
develops a minimum and a maximum. The frequencies of the two local extrema initially have
critical power law scaling, suggesting the approach of a singular glass transition. At higher
volume fractions in excess of the glass transition, the viscous modulus continues to show a well
defined minimum and a well defined maximum. The non-linear moduli show a single
perturbative yield point beyond which the suspension softens. The yielding behavior of the
nanocomposite is shown to be sensitive to the strain frequency and the proximity of the strain
frequency to the maximum frequency for the linear viscous modulus from linear rheology
which characterizes thermal relaxation of glassy particle clusters in the zero strain limit. The
linear and non-linear measurements are compared against a recently developed mechanical
theory for colloidal glasses.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As a supercooled liquid approaches a glassy state, its viscosity
changes by many orders of magnitude with small changes
in the temperature control parameter [1] (i.e. temperature in
molecular fluids and volume fraction in colloidal fluids). The
increase in viscosity of colloidal supercooled liquids is due
to the localization of particles within a cage of neighbor
particles. Understanding the dynamics of particle caging in
concentrated colloidal fluids has substantial implications for
the design and usage of a wide range of consumer products
where particles are used as rheological modifiers and structural
enhancers. The liquid to glass transition is unique in that
material properties change dramatically as the transition is
crossed, but the transition is structurally unidentifiable [2].
As a result, the glass transition is associated with cooperative
particle dynamics.

Dynamic scattering experiments carried out as the glass
transition is approached show two relaxation processes: a
β process due to localized particle diffusion within a cage
of nearest neighbor particles and an α process due to

particle diffusion out of the cage [3, 4]. The localization
of particles by neighbors slows down dynamics and results
in enhanced viscosities [5, 6]. Structural relaxation in the
supercooled liquid is defined by the characteristic time of cage
rearrangements, the α-relaxation time [7]. These relaxation
processes depend on the particle volume fraction and diverge
in a critical manner as the glass transition is approached [4].

Confocal microscopy studies of hard sphere suspensions
near the glass transition confirm the existence of temporal
and spatial heterogeneities in supercooled colloidal liquids
showing that the glassy dynamics are more complex
than initially inferred from scattering experiments [5, 6].
The heterogeneities arise from variation in local particle
density that creates clusters of particles with higher particle
mobility [5, 6, 8]. The displacement vectors of fast moving
particles forming the clusters is correlated showing that the α-
relaxation is driven by the cooperative motion of locally fast
particle clusters rather than at the single particle level [8]. The
size of cooperative rearranging regions increases with volume
fraction [6]. Slow clusters have a rigid glass-like structure
and form a percolated network [9]. As time progresses,
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the percentage of slow clusters having sampled the fast state
increases until the percolated network breaks down enabling
flow [9]. As the glass transition is approached, the break up
time, τ ∗, of the percolated network increase [6, 9]. As the
glass transition is crossed, the size of cooperative rearranging
regions spans the viewing window and fast moving particles
appear isolated [6].

The mode coupling theory (MCT) is a heavily studied
model which uses equilibrium microstructure information
to predict particle localization and the effect of collective
processes on dynamics [10–12]. This model has seen extensive
testing with hard sphere colloidal fluids and predicts that
diffusivities go to zero in a critical manner at the glass
transition volume fraction [3, 4]. MCT predicts dynamic
arrest above this critical volume fraction. While extensively
tested there remains controversy over the idealized nature
of the glass transition and the nature of stress relaxation at
and above the ideal MCT glass transition. A recent model
aimed at attempting to capture relaxation phenomena near
and above the glass transition volume fraction has combined
the microscopic structural cage correlations of MCT at the
single particle level with a non-equilibrium free energy that
controls particle dynamics [13, 14]. The theory does not
include coupling of dynamic density fluctuations. Therefore,
an ideal glass transition plays no role. This model has been
further extended to include activated barrier hopping as an
ergodicity restoring mechanism with a non-linear stochastic
Langevin equation [13–17]. Recently, Kobelev and Schweizer
have included the effect of an external stress which acts to
remove a free energy minimum and reduce an entropic barrier
in the non-equilibrium free energy allowing particles to escape
localization [15]. This approach has shown remarkable success
in capturing the volume fraction dependence of suspension
viscosities up to the ideal glass transition of hard sphere
colloidal glasses [13, 14].

Here we present dynamic mechanical measurements on
two systems composed of index matched particles suspended
in low molecular weight, unentangled, polyethylene oxide
(PEO) melts having liquid-like structure factors at all volume
fractions studied [18]. The particles in the low MW PEO
were recently shown through measurement of the suspension
viscosity to interact as effective hard spheres [18]. With
increasing volume fraction these suspensions develop classical
glassy behavior displaying two characteristic relaxation
mechanisms typically associated with a β relaxation process
of particles diffusing within a cage of nearest neighbors and
an α relaxation process associated with release from cages.
Critical behavior with power law divergence is observed in the
frequencies characterizing these relaxations extrapolating to an
idealized glass transition at an effective hard sphere volume
fraction of 0.583. The suspensions also show continued
relaxation behavior above this volume fraction indicating the
presence of relaxation mechanisms at work above the critical
volume fraction. We compare our rheological characterization
of the nanocomposite suspensions to the elastic modulus
and yield stress predicted for hard spheres by Kobelev and
Schweizer. To our knowledge, this is the first mechanical
characterization of the linear and non-linear glassy dynamics

Figure 1. The low shear viscosity plotted versus φη for PEO400 (◦)
and PEO1000 (��). The dashed line is a smooth curve through data
for experimental hard spheres [26].

in a particle suspension capturing both the α and β relaxations.
Previous studies of the mechanical properties of glassy particle
suspensions have not been able to access experimentally
the dynamics due to the long time scales of the relaxation
process. In the present system, the rheological properties of the
dispersing polymer and the small size of the particles allow the
relaxation dynamics to be seen within the viewable frequency
window.

2. Experimental methods

Suspensions are made by dispersing 44 ± 4 nm Stöber
silica in low molecular weight PEO melts using solution
intercalation mixing. The polydispersity of the particles
frustrates crystallization seen in more monodisperse particle
suspensions for 0.50 � φ � 0.55. Ethyl alcohol is the
added solvent for mixing and is evaporated in a vacuum
oven. The unentangled PEO–silica nanocomposites have low
shear viscosities that compare well to other model hard sphere
suspensions (figure 1). PEO with a molecular weight of
400 and 1000 are Newtonian fluids within the studied range
of shear rate and frequency with viscosities of 16 cP and
35 cP, respectively. In the melt, the silica particles have
a larger effective size due to the adsorption of PEO to the
particle surface such that it forms an immobilized layer that
increases the particle hydrodynamic size. The thickness of the
immobilized layer scales with polymer radius of gyration, Rg,
such that the low shear viscosity of two molecular weights
of PEO nanocomposites collapsed onto a single curve that
agrees with experimental hard sphere suspension viscosity at
all particle concentrations. The collapse of the nanocomposite
viscosities onto the hard sphere curve is accomplished by
adjusting the core silica volume fraction, φc, to account
for the adsorbed layer allowing us to define an effective
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A) B)

Figure 2. The linear dimensionless elastic, G ′, and viscous, G ′′ , moduli for PEO400 is plotted versus dimensionless frequency. The effective
volume fractions are φη = 0.535 (♦), 0.569 (◦), 0.575 (��), 0.581 (�), 0.587 (#), 0.592 (∗), and 0.598 (+).

Figure 3. The linear dimensionless elastic, G ′, and viscous, G ′′, moduli for PEO1000 is plotted versus dimensionless frequency. The effective
volume fractions in PEO1000 are φη = 0.515 (♦), 0.568 (◦), 0.573 (��), 0.578 (�), 0.583 (#), 0.588 (∗), and 0.594 (+).

particle volume fraction, φη = [1 + (2.9Rg/Dc)]φc where
Dc is the diameter of the core silica particles and Rg/Dc =
0.019 and 0.030 for PEO 400 and 1000, respectively. The
ability of hard spheres to capture the viscosity of the PEO–
silica nanocomposite suspensions motivates a comparison
of these suspensions at higher volume fractions, where the
nanocomposite suspensions become increasingly elastic, to
other experimental hard sphere systems and to theoretical
prediction of hard sphere glassy rheology.

Oscillatory rheology experiments were performed using a
constant stress C-VOR Bohlin rheometer with cone and plate
geometry. The cone diameter was 20 mm and the angle was 4◦.
Measurements were made at a sample temperature of 75 ◦C.
Constant stress frequency sweeps measured the elastic, G ′, and
viscous, G ′′, moduli in the linear viscoelastic regime. Strains
were carefully monitored and kept near 10−3. Single frequency
stress sweeps measured the same moduli from strains of 10−3

to 1. Before measurement, the structure was broken down by
preshearing the sample followed by a 5 min recovery time. The
recovery was nearly instantaneous, but five minutes was given
to ensure complete recovery.

3. Results and discussion

3.1. Linear rheology

In figures 2 and 3, we show frequency sweeps of the
dimensionless elastic and viscous modulus in PEO400 and
PEO1000 at effective volume fractions below and above 0.58.
The moduli are non-dimensionalized by the effective particle
hydrodynamic diameter, Dη, and by the thermal energy, kBT ,
which is the product of Boltzmann’s constant and the absolute
temperature. The frequency is non-dimensionalized by Dη and
the dilute self diffusion coefficient, Do = kBT /3πηp Dη where
ηp is the polymer viscosity. As the volume fraction is raised,
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Figure 4. The (A) minimum and (B) maximum dimensionless frequency for PEO400 (•) and PEO1000 ( ) plotted versus the effective
particle volume fraction shows power law type divergence at low φη and decaying exponential behavior at high φη . The dashed line shows a
power law fit at lower φη. The exponent for the minimum frequency is 1.5 ± 0.7 and for the maximum frequency is 3.0 ± 1.9 with a glass
transition volume fraction of 0.583.

the elastic modulus plateaus at high frequency and increases in
magnitude. The terminal flow regime shifts to lower frequency
showing that longer times are needed for the dispersion to
flow. Over the frequency range of the plateau in the elastic
modulus, a minimum and a maximum develop in the viscous
modulus with a depth and height that increase and shift to lower
frequencies as the particle volume fraction is raised.

Using past extensions of MCT to the mechanical dynamics
of glassy systems, we can understand the frequency behavior
of the elastic and viscous moduli through the relaxation of
particles trapped in nearest neighbor cages [9, 19, 20]. At
high frequencies (short times), particles are unaware that they
are caged and dynamics is dominated by the high frequency
viscosity. A minimum develops in the viscous modulus as
particle diffusion is limited by the cage. The minimum
frequency in the viscous modulus is inversely proportional to
the longest β relaxation time, τβ , where particles are diffusing
within a nearest neighbor cage. The frequency of the minimum
in G ′′ corresponds to an inflection point in G ′. As the
frequency is reduced the viscous modulus passes through a
minimum and increases to a maximum. In the region of
increasing viscous modulus, there is a weak decrease in the
elastic modulus after the point of inflection. Both phenomena
reflect the dynamics of the α relaxation process when particles
escape their cages thus dissipating energy stored by the cage.
Near the end of the α process, the viscous modulus reaches a
maximum and elastic modulus rolls off a plateau value marking
the transition into the terminal regime. At very low frequencies
(long times) particles are able to diffuse out of cages and the
nanocomposite acts like a viscous fluid.

While predicted by MCT, for many years there was
no direct experimental evidence showing how the relaxation
of cages resulted in mechanical energy storage at short
time and energy dissipation and flow at long time. A
recent comparison of confocal microscopy measurements and
computer simulations show that the frequency at the maximum
in G ′′ and the loss of elasticity corresponds to the break up

time, τ ∗, of a percolated network of slowly relaxing glassy
particle clusters [9]. Our experimental results showing the
behavior of the linear moduli as a function of frequency agree
with the simulation predictions in this study, thus connecting
the glassy dynamics of silica dispersed in low molecular weight
PEO to the cooperative rearrangement of percolating clusters.

Previous scattering studies have shown that the relaxation
times characterizing the dynamics of colloidal suspensions
approaching the glass transition display power law behavior
as a function of the volume fraction [3, 4]. Here we test
this scaling for the minimum, ωmin, and maximum, ωmax,
frequencies. In figure 4, the dimensionless minimum and
maximum frequency are plotted as a function of φη for PEO400
and PEO1000. The frequencies of both molecular weights
collapse reasonably well when rescaled by Dη and Do. In
addition, figure 5 shows a collapse of the moduli at these two
characteristic frequencies indicating a hard sphere like scaling
for changes in continuous phase viscosity and effective particle
size. For φη � 0.584, ωmin and ωmax decrease in a critical
manner that is well described by ω ∼ (1 − φ/φg)

λ with λ =
1.5±0.7 and φg = 0.583 for ωmin and λ = 3.0±1.9 and φg =
0.584 for ωmax. For hard sphere glasses, MCT predicts power
exponents of 1.66 and 2.58 for the β and α relaxation processes
respectively and φg = 0.525 [10–12]. The predicted exponents
of MCT theory were shown to agree reasonably well with a
dynamic light scattering (DLS) study of particle diffusivities in
hard sphere like polymethylmethacrylate particle suspensions
with a φg = 0.57 [4]. The exponents found for ωmin and ωmax

are comparable within experimental uncertainty with the MCT
exponents.

In the PEO–silica nanocomposite suspensions at volume
fractions greater than φg , we still see a ωmin and a ωmax giving
the appearance that relaxations continue contrary to what is
predicted for an ideal glass transition albeit the behavior as a
function of volume fraction has changed. Above φg = 0.583,
the volume fraction dependence of ωmin and ωmax can be
described by a decaying exponential. Interestingly, the DLS
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Figure 5. The dimensionless elastic modulus (solid symbols) and
viscous modulus (open symbols) at the minimum (circles, squares)
and maximum (triangles, diamonds) dimensionless frequencies are
plotted versus the effective particle volume fraction in PEO400
(circles, triangles) and PEO1000 (squares, diamonds).

study also shows the beginnings of a decay in the intermediate
scattering function (ISF) at volume fractions in excess of φg

suggesting the appearance of continued terminal relaxation
behavior above φg .

The change in the functional form of the minimum and
maximum frequency above φg suggests a new mechanism for
stress relaxation within the glass. MCT predicts an idealized
glass transition where particles become permanently caged and
long time self diffusivity goes to zero. As a result, within MCT,
the glass is characterized by structural arrest. Our results are
in agreement with the predictions of MCT for φ/φg < 1, but
demonstrate continued relaxation when φ/φg > 1. While the
mechanism is not entirely understood as fast moving particles
are isolated, long range particle diffusion is observed above
the glass transition volume fraction [6, 9]. The presence of
single fast moving particles above the glass transition may
support the existence of activated hopping processes capable
of relieving internal stress in the glass. However, the authors
of the DLS study attribute the decay above φg to non-ergodic
time evolution since the ISF was found to change depending on
the waiting time between measurements and did not stabilize
to a time insensitive function up to waiting times of 107 s [4].

Schweizer and coworkers have constructed a theoretical
framework that includes the microstructure cage correlations
of MCT at the single particle level with a free energy landscape
approach that controls particle dynamics [14, 15]. The theory
does not include coupling of dynamic density fluctuations and
is therefore not influenced by an ideal glass transition. Kobelev
and Schweizer [15] predict the zero stress dimensionless elastic
modulus to have an exponential dependence on the volume
fraction:

D3G ′

kBT
= (1.6 × 10−4)e26φ. (3.1)

This equation is calculated from the theoretical model using
Percus–Yevick structural input of hard sphere equilibrium
microstructures.

Figure 6. The dimensionless linear elastic modulus at the point of
inflection within the frequency plateau is plotted versus the effective
particle volume fraction in PEO400 (•) and PEO1000 ( ). The
solid line is the prediction of no adjustable parameter theory and the
dotted line is the rescaled theory with the same functional
dependence on volume fraction [15].

In figure 6, we plot the linear elastic modulus at the
point of inflection of G ′ which corresponds to the minimum
frequency in the viscous modulus. The elastic modulus
prediction of Kobelev and Schweizer is also shown in figure 6.
Three additional data points extend the results up to φη =
0.616 in PEO400 and one additional data point extend the
results in PEO1000 up to φη = 0.604. The last two data points
in PEO400 show a break in the data such that G ′ appears to be
a stronger function of φη. A similar trend is seen in PEO1000
for the last data point. The transition is attributed to the onset
of polymer confinement effects.

Studies of the mechanical properties of polymer confined
between surfaces show that as surface separations approach the
size of the polymer molecule, namely Rg, the viscosity of the
polymer between the surfaces increases above the bulk value.
When surface separations are greater than the confinement
condition, the viscosity of the film is comparable to the bulk
viscosity with a no slip boundary condition located above the
surface at a distance that scales on Rg [21–24]. Confinement
effects in the PEO-silica nanocomposite set in when the
particle surface separation, acc = (Dc/Rg)[(φm/φc)

1/3 − 1]
is reduced from 3.7Rg at φη = 0.604 to 3.5Rg at φη =
0.610 in PEO400. Here φm is the maximum random packing
fraction of 0.63. This result suggests that for φη � 0.604, the
unentangled PEO400 nanocomposite melt can be mechanically
treated as particles with a size Dη dispersed in a polymer
continuum. When φη > 0.604, the confined polymer
enhances the nanocomposite melt viscosity. In the PEO1000
nanocomposite, confinement sets in when φη > 0.594 where
the surface separation in PEO1000 is 3.6Rg. For φη � 0.604
in PEO400 and φη � 0.594 in PEO1000, we expect the hard
sphere treatment of the nanocomposite to be applicable.

A direct comparison of the theory and the data shows that
the theory over predicts the elastic modulus of the suspensions
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Figure 7. The non-linear elastic and viscous moduli for PEO400 at (A) 10 Hz and (B) 0.1 Hz versus strain. The effective volume fractions are
φη = 0.569 (◦,•), 0.575 (��, ), 0.581 (�,�), 0.587 (#, ), 0.592 (∗,×), 0.598 (+, −), 0.604 ( , ), 0.610 (	,�), and 0.615 ( , ).

by a factor of ∼18. However, the functional dependence of G ′
on the volume fraction is well captured by the theory when
the prediction is scaled down. When fitting the data to an
exponential of the form Aebφ , b is 24 ± 2 showing close
agreement with the predictions. The data can also be well fit
by a power law of the form Aφn where n is 14 ± 1. Power
law fitting of the theoretical predictions gives an exponent of
14 again showing agreement between our measurements and
the predictions. Over prediction by the theory is common
when compared to other experimental hard sphere systems
and can be attributed to using the Percus–Yevick structure
factor as the structural input in the theory and/or to particle
softness [15, 25].

3.2. Non-linear rheology

Non-linear elastic and viscous moduli of dense nanocomposite
suspensions from controlled stress sweeps at dimensional
(dimensionless) measurement frequencies, ωmeas, of 10 Hz
(4.1×10−2) and 0.1 Hz (4.1×10−4) as a function of strain are
shown for different volume fractions in figure 7. At 10 Hz, in
the large strain limit when φη � 0.604, the moduli decrease
with power law slopes of G ′ ∝ γ −1 and G ′′ ∝ γ −0.5. A
perturbative yield point, defined as the strain where the elastic
modulus reaches 0.9 of its low strain plateau value, is reached
at a strain of ∼0.03 for all volume fractions. The viscous
modulus develops a peak as the volume fraction is raised. This
maximum in loss behavior occurs initially at a strain of 0.07
at φη = 0.569 and shifts over to 0.11 at φη = 0.604. At
a frequency of 0.1 Hz in figure 7(B), the perturbative yield
strain still occurs at a value of 0.03, but the peak in G ′′ is
only observed for φη � 0.581. The peak is first observed at
a strain of 0.035 and shifts to a value of 0.07 for φη = 0.604.
In the large strain limit, the terminal elastic modulus decreases
as G ′ ∝ γ −1.7. When there is no peak in G ′′, the terminal
power law is G ′′ ∝ γ −0.7, and when there is a peak in G ′′, the
terminal power law is G ′′ ∝ γ −0.8. If the strain at the peak in
G ′′ is compared at the same φη but at different measurement
frequency, the peak occurs at a lower strain at 0.1 Hz than at

10 Hz demonstrating that less deformation is needed to break
up the structure at lower frequencies.

When φη > 0.604 in PEO400, the yielding of the
suspensions is influenced by confinement of the polymer. This
is seen in two areas. First, at low strain when φη > 0.604,
small increases in φη result in a jump in the rate increase in
G ′ as volume fraction is increased. Secondly, at high strain,
the terminal decline in G ′ and G ′′ are characterized by weaker
power law decays. In the large strain limit, for φη > 0.604,
G ′ ∝ γ −0.8 and G ′′ ∝ γ −0.2 at 10 Hz and G ′ ∝ γ −1.1

and G ′′ ∝ γ −0.6 at 0.1 Hz. The weaker decay suggests that
the applied strains are not sufficient to drive the suspension
into terminal behavior. We associate this with the confined
polymer resisting complete break up of cage microstructure.
Measurements at higher strain were frustrated by slip between
the nanocomposite melt and the rheometer tools.

In section 3.1, it was noted that ωmax is related to the
break up time of a percolated network of slowly relaxing glassy
clusters such that the suspension lies in the terminal, liquid-
like region when ω < ωmax. We associate the onset of the
maximum in G ′′ with increasing strain with the state of the
suspension in the zero strain limit. Shown in figure 8 are
dimensionless elastic and viscous moduli for a suspension with
φη = 0.575. The frequency of the applied stress sweep,
ωmeas, is shown under three conditions: ωmeas/ωmax > 1,
ωmeas/ωmax ∼ 1, and ωmeas/ωmax < 1 where at this volume
fraction ωmax = 0.46 Hz. These stress sweeps clearly show the
onset of the maximum in G ′′ growing in when ωmeas/ωmax ∼ 1
with the strain at the maximum growing with strain frequency.
Notice that the low strain viscous modulus passes through
a maximum when ωmeas/ωmax ∼ 1. This result is simply a
restatement of the data in figures 2 and 3 where in the low
strain limit G ′′ passes through the viscous maximum at ωmax.
These experiments were chosen to illustrate the disappearance
of the maximum in G ′′ at larger strains when ωmeas becomes
less than ωmax and is typical of other systems investigated.
For ωmeas/ωmax < 1, the clusters have the opportunity to relax.
For ωmeas/ωmax > 1, the strain frequency is sufficiently fast
that thermal motion is insufficient to disrupt the cages and
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Figure 8. The non-linear elastic and viscous moduli for PEO400 at
φη = 0.575 at measurement frequencies, ωmeas, of 0.1 Hz (◦,•),
0.5 Hz (��, ), and 10 Hz (�,�).

there is increased dissipation at a strain associated with cage
degradation.

Due to the similarity of the mechanical behavior of the
nanocomposite suspensions studied here to that of hard spheres
suspended in a low molecular weight continuous phase, we
are interested in how well the strain softening and yield of
the glassy nanocomposite suspensions compare to theoretical
predictions of hard sphere glasses. For such systems, Kobelev
and Schweizer extend the naı̈ve MCT free energy landscape
model to predict an absolute yield point where, in the absence
of hoping motions, the energy barrier to hopping drops to zero
and a perturbative yield point where the elastic modulus drops
to 0.9 of the zero stress limit. The absolute yield stress is
predicted to occur at strains in excess of 0.1 and is found to
lie near strains where G ′ = G ′′ = Gx in the stress sweeps. For
purposes of comparison with the scaling predicted by Kobelev
and Schweizer we choose Gx as a surrogate for the position of
the absolute yield point.

In figure 9(A), the stress, σx , at Gx , the dimensionless
value of Gx , and the strain, γx , at Gx are shown as a function
of φη. At 10 Hz, ωmeas/ωmax > 1 for all φη shown. As
a result these samples are always glassy in the low strain
limit. The dependence of σx , Gx , and γx on φη changes near
ωmeas/ωmax = 1 as seen near φη = 0.58 and φη = 0.585 for
1 and 0.1 Hz, respectively. At 0.1 Hz for φη � 0.575, G ′′ is
larger than G ′ at low strain (figure 7(A)) because ωmeas is less
than the frequency where the linear moduli cross (figure 4).
These nanocomposites behave as viscous liquids at a frequency
of 0.1 Hz. At 1 Hz, ωmeas is always greater than the frequency
where the limiting low strain moduli cross but the values of
σx , Gx , and γx remain sensitive to proximity of ωmeas to
ωmax. Since ωmax decreases rapidly as φη increases, for all
φη where ωmeas > ωmax, the glassy yielding behavior of the
nanocomposite melts and the volume fraction dependencies of
σx , Gx , and γx are similar to the behavior at 10 Hz.

We compare the predictions of Kobelev and Schweizer
with the values of Gx measured at 10 Hz as ωmeas/ωmax > 1

for all φη reported in figure 9. The prediction of the stress,
elastic modulus, and strain at the absolute yield point are
drawn as solid lines. Kobelev and Schweizer indicate that the
predicted dimensionless stress, D3σabs/kBT , is equally well
fit by an exponential and a power law of the forms Aebφ and
Bφn, respectively, with A = 6.16 × 10−4 and b = 19.2 and
B = 1.72 × 104 and n = 11. The experimental results are
lower than the prediction. When rescaling the theory to the
initial magnitude of the stress at φη = 0.568, we find that the
exponential prediction of the absolute yield stress on volume
fraction fits the data reasonably well up to φη = 0.592 but falls
off of the data at higher φη. A power law fit of the data up to
φη = 0.604 prior to confinement fit the data reasonably well
with B = 2.1 × 104 and n = 17 ± 1 shown by the dashed in
figure 9(A). An exponential also provides a reasonable fit when
b = 28 ± 1 and A = 1.4 × 10−7.

A similar analysis is applied to Gx shown in figure 9(B).
The predicted absolute yield elastic modulus of Kobelev and
Schweizer is well fit by a power law with coefficient and
exponent of B = 1.89 × 105 and n = 12.9. The rescaled
theory shown by the dotted line does not fit the data. We
find a reasonable fit to a power law prior to confinement with
B = 330 and n = 6.2 ± 0.5.

The crossover strain, γx , in figure 9(C) increases at all
three frequencies with φη prior to confinement. The opposite
trend is predicted for hard sphere glasses by Kobelev and
Schweizer. Once the polymer is confined, γx sharply increases
followed by a decrease at 0.1 and 1 Hz, while at 10 Hz there
is still an increase. Thus, while the hard sphere model captures
much of the linear mechanical behavior of this unentangled
polymer nanocomposite melt, the presence of the polymer or
our association of σx with the absolute yield stress in the theory
appear to compromise predictions of the absolute yield strain.

In figure 10, we present results for the stress, moduli, and
strain at the perturbative yield point. When the polymer is
unconfined, the proximity of ωmeas to ωmax at 0.1 and 1 Hz
influences measurement of the perturbative yield values. The
theory is only compared to σy at 10 Hz since the yielding
behavior at this frequency shows the stress accelerated break
up of glassy particle domains for all volume fractions. Once
the polymer is confined, the perturbative yield stress, moduli,
and strain change as a function of φη.

Kobelev and Schweizer show that the perturbative yield
stress, σy , predicted by the theory is well fit by a power law
with B = 880 and n = 8.6. When the theory is rescaled
to the magnitude of σy at φη = 0.568 shown by the dotted
line in figure 10(A), the predicted power law does not capture
the trend of the data. We find a much stronger power law
dependence of n = 23 ± 2 with B = 2.5 × 105 when fitting σy

up to φη = 0.604.
The rescaled prediction of the perturbative yield elastic

modulus agrees well with the data. The prediction of G ′
y

is of the same form as the prediction for the zero stress
elastic modulus but the coefficient is reduced by 10%. After
polymer confinement, σy and G ′

y jump in value and become a
stronger function of φη. Prior to polymer confinement, G ′′

y is a
decreasing function of φη. As the polymer is confined, G ′′

y also
becomes an increasing function of φη.
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Figure 9. (A) The stress, σx , at the point where the elastic and viscous moduli are equal versus the effective volume fraction at frequencies of
0.1 Hz (circles), 1 Hz (squares), and 10 Hz (triangles). The solid line is the predicted absolute yield values of Kobelev and Schweizer and the
dotted line is the rescaled predictions down to the initial magnitude at φη = 0.568 [15]. The dashed line is power law fits of σx at 10 Hz for
φη � 0.604. (B) The moduli, Gx , at the point where the elastic and viscous moduli are equal versus the effective volume fraction at
frequencies of 0.1 Hz (circles), 1 Hz (squares), and 10 Hz (triangles). The solid line is the predicted absolute yield values of Kobelev and
Schweizer and the dotted line is the rescaled predictions down to the initial magnitude at φη = 0.568 [15]. The dashed line is power law fits of
Gx at 10 Hz for φη � 0.604. (C) The strain, γx , at the point where the elastic and viscous moduli are equal versus the effective volume
fraction at frequencies of 0.1 Hz (circles), 1 Hz (squares), and 10 Hz (triangles). The solid line is the predicted absolute yield values of
Kobelev and Schweizer [15].

The perturbative yield strain, γy is a decreasing function of
φη when ωmeas < ωmax. Once ωmeas > ωmax (prior to polymer
confinement), γy increases with φη at all three frequencies.
The theory of Kobelev and Schweizer predicts that γy is a
decreasing function of φη when suspensions are in the glassy
state contrary to what is seen here. Once the polymer is
confined, γy shows a change at the point of confinement such
that the strain decreases.

Differences between the experimental and predicted yield
parameters may be a result of the theory being developed
for hard spheres with no regard for the dispersing phase
being a polymer melt. The connectivity of polymer
segments may be influencing the yielding mechanism of the
nanocomposites. In addition, the non-linear behavior of the
polymer nanocomposites demonstrates the effect of strain

frequency on the strain dependence of the moduli at different
frequencies. This type of frequency dependence is currently
not in the model.

4. Conclusion

In this paper, the mechanical properties of suspensions of
nanoparticles dispersed in a low molecular weight polymer
melt are characterized. The particles have a similar refractive
index to the polymer which minimizes particle van der Waals
forces, and viscosity measurements at dilute to concentrated
volume fractions show that particle interactions are hard sphere
like in the polymer melt due to the formation of an adsorbed
polymer layer on the particle surface. This comparison
suggests that the growth of elasticity in the nanocomposite at
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Figure 10. (A) The perturbative yield stress, σy , versus the effective volume fraction at frequencies of 0.1 Hz (circles), 1 Hz (squares), and
10 Hz (triangles). The solid line represents the predictions of Kobelev and Schweizer [15]. The dotted line is the rescaled theory down to the
initial magnitude of the perturbative yield at 10 Hz. The dashed line is a power law fit of σy at 10 Hz for φη � 0.604. (B) The elastic modulus,
G ′

y , (open symbols) and viscous modulus, G ′′
y , (closed symbols) at the perturbative yield versus the effective volume fraction at frequencies of

0.1 Hz (circles), 1 Hz (squares), and 10 Hz (triangles). The solid line represents the predictions of Kobelev and Schweizer [15]. The dotted
line is the rescaled theory down to the initial magnitude of the perturbative yield at 10 Hz. (C) The perturbative yield strain versus the
effective volume fraction at frequencies of 0.1 Hz (circles), 1 Hz (squares), and 10 Hz (triangles). The solid line represents the predictions of
Kobelev and Schweizer [15].

high volume fractions signals the onset of a colloidal glass
transition.

As the effective particle volume fraction approaches 0.58,
dynamic mechanical measurement of the linear elastic and
viscous moduli show the emergence of a plateau elastic
modulus at high frequency and characteristic frequencies in the
viscous modulus which define two relaxation processes in the
nanocomposite melt. At volume fractions less than the glass
transition value of 0.583, the volume fraction dependencies
of both characteristic frequencies and the magnitude of the
plateau elastic modulus are captured reasonably well by
theoretical predictions of hard sphere glasses. This leads to
the conclusion that the origin of elasticity in the concentrated
unentangled nanocomposite melt is due to the formation of
a colloidal glass. These materials do not show an idealized
glass transition since an exponentially decreasing terminal
relaxation frequency is observed above the glass transition
volume fraction.

Yielding of the concentrated nanocomposite melt was
studied via stress controlled oscillatory shear sweeps. We show
that the non-linear yielding of the suspensions is influenced
by the oscillatory frequency of the stress sweep and by the
proximity of the oscillatory frequency to the frequency at
the maximum in the linear viscous modulus indicating the
terminal relaxation timescale of the nanocomposite. At high
oscillatory frequency, the suspensions show glassy behavior at
all volume fractions studied here. The non-linear yielding of
the suspension is described by the breakup of percolated glassy
domains. At lower frequencies, the non-linear rheology of the
suspension is influenced by the timescale for thermal particle
motion to relax glassy domains in the suspension.

Little agreement is seen in a comparison between the
non-linear elastic modulus, yield stress, and yield strain of
the concentrated nanocomposites and the non-linear yielding
theory of Schweizer and co-workers. Explanations for the
differences may lie in the cooperative nature of particle
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dynamics that is known to function in the relaxation of glasses
and is not included in the model and in activated hopping
process which are later incorporations into the model. The
differences between the model and the nanocomposites may
also result from contributions of the polymeric nature of the
continuous phase such that connectivity of polymer segments
may influence the yielding mechanism of the nanocomposite
melt.
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